gcEEVM v.0.1

Soda Labs

1 Introduction

Ethereum virtual machine (EVM) is the leading blockchain-native virtual machine, interleaving computer
architecture aspects with incentive mechanisms, which made it the first state-transition engine for a decen-
tralized and permissionless general system. One of the main obstacles to the mass adoption of the EVM is
its lack of confidentiality, leaving all information public, which is obviously not in par with what businesses,
communities, and individual expect from a system. To this end, we introduce the gcEVM, an extension
to the EVM that support confidentiality by offering a series of functionalities for keeping private data and
performing operation on it without ever exposing it (unless required by the execution itself). Because of the
nature of the EVM, where everything is visible, handling ciphertexts must be meticulously done , in order
to protect those ciphertexts from theft, replication, etc. We demonstrate our solution via a cryptographic
primitive from the field of secure computation, called garbled circuit, hence the extension is called gcEVM.

In the rest of this section we give the necessary background on the EVM and argue about the importance
of confidentiality in the EVM for a real impact. We briefly describe the notion of garbled circuits and
garbling protocols in Section 2. Then, in Section 4 we describe our EVM extension that relies on a garbling
protocol.

1.1 Background on the EVM

The EVM'’s Accounts and State. In a very high-level, the EVM takes an ordered list of valid
transactions and execute them. Execution of transactions may change the state of the machine and so, in
an abstract way, we refer to this execution process as the state-transition function of the machine. The state
of the EVM is composed of many sub-states, each is associated with an account (also known as address);
and these accounts may be either external or internal. An external account (also known as externally owned
account, or EOA) is an account that may initiate a transaction whereas an internal account (also known as
a smart contract) only reacts to requests that were initiated by EOAs. In the following we use the terms
‘internal account’ and ‘smart contract’ interchangeably. The sub-state associated with every account contains
its balance and nonce, where balance refers to the number of coins that account ‘owns’ and the nonce refers to
the number of transactions that account has issued so far, such that each newly issued transaction increment
that number by exactly one; the latter is used as a protection from replay attacks — so that no transaction
may by launched twice. Since internal accounts (smart contract) cannot really initiate transactions, their
nonce is incremented only when they trigger the creation of a new internal account, thus, the nonce of a
smart contract simply refers to the number of other smart contracts that they have created. While the
sub-state associated with an EOA consists of its balance and nonce only, the sub-state of a smart contract
may additionally contain an arbitrary data structure along with a set of interfaces (or methods) that can
change its sub-state (either its balance, nonce, or the additional data structure).

Transactions may be simple or complex; in a simple transaction an EOA transfers some amount of the
native coin to another account (external or internal); in a complex transaction an EOA may either create
a new smart contract (also referred as ‘smart contract deployment) or call a method of an already existing
smart contract. In the latter, the reaction of the smart contract to that call may involve further calls to
methods of (potentially other) smart contracts, and so on. This way, a complex transaction initiated by an
EOA may trigger a chain-reaction that causes changes in multiple sub-states. On the other hand, a complex

transaction may also cause no change to any sub-state at all. When a method is said to be a view-method it
is guaranteed that it never changes any sub-state, which implies that it can call only other view-methods.

The EVM’s Execution, Memory and Storage. Execution in the EVM is fueled by gas, which is paid
in the native coin (Ether in Ethereum) and serves as a measure of computational effort. This gas is paid from
the balance of the EOA that initiates the transaction. Each operation within the EVM, from arithmetic
calculations to data storage, consumes a certain amount of gas, incentivizing efficiency and preventing
network abuse (e.g., mounting a denial-of-service attack by sending an infinite stream of transactions).

Memory management in the EVM is unique; it maintains a volatile memory store (simply called ‘memory’
hereafter) during execution but does not retain it after the execution completes. This memory is linear
(instantiated with a stack data structure) and expands as needed by a contract’s execution but is wiped
clean after the process ends. For persistent storage, the EVM utilizes a key-value store known as ‘storage’,
which persists between transactions but is significantly more costly in terms of gas to utilize. This design
encourages developers to optimize their use of storage and memory, balancing the need for persistent data
against the gas costs of operations, ensuring that the EVM remains scalable and efficient. The storage is the
one that manages the EVM’s state, and so each sub-state is maintained as an isolated key-value store.

Let us describe a typical execution process: When a smart contract method is called, and it needs to
read data from its storage (e.g., a variable value), the EVM fetches this data from the contract’s storage (a
sub-state) and loads it into memory for quick access during this specific execution. This is done through
specific EVM opcodes such as sload, which reads data from the variable’s location at the storage. The
data read is then available in memory for processing or computation during the contract execution. After
the smart contract performs computations or manipulates data within the memory, there may be a need to
persist some of this data back to storage. To store data back from memory to storage, the contract uses
opcodes like sstore. This opcode takes the data from memory and writes it to the specified location in the
contract’s storage.

Data Passing Between Smart Contracts. The EVM facilitates data passing from one contract to
another via a function call, it employs a mechanism that allows contracts to interact and invoke functions
on each other. This process is foundational to the composability and interoperability of smart contracts on
the Ethereum platform.

When a contract (caller) wants to invoke a function on another contract (callee), it specifies the callee’s
address and the function to be called, along with any arguments required by that function. This can be
done using opcodes like call and delegatecall. The data passed to the callee includes information about
the function to be executed (identified by its signature) and the arguments for that function. The callee
contract then executes the specified function using the provided arguments. This execution can read from
or write to the callee’s storage, depending on the function’s logic, and eventually gets back to the caller
contract using the opcode ret. A run-time variable, called depth, is incremented on every function call (to
a different contract) and decremented when the function returns to the caller.

Error Handling. The notion of reverting a transaction or a contract call is a fundamental concept designed
to ensure the integrity and security of smart contract operations. A revert operation undoes all changes made
to the state during a transaction or call, except for the consumption of gas, and returns an error message
to the caller. This mechanism is crucial for handling errors and ensuring that failed transactions do not
alter the blockchain state in an unintended manner. A revert error is triggered intentionally by using the
revert statement in Solidity or when conditions specified by require statements are not met. It’s used to
handle logical errors in contract execution, where a certain condition or prerequisite is not satisfied. The gas
consumed up to the point of revert is not refunded, but any remaining gas is.

An assert function is used in Solidity to handle internal errors and to check for invariants within the
code. If an assert statement fails, it indicates a serious bug in the contract code, leading to a ‘panic’ error.
Unlike revert, assert failures consume all the gas provided with the transaction, signaling a more severe form
of error that should not occur during normal operation.

Other types of error are possible in the EVM, like out-of-gas, stack overflow or underflow, invalid opcode,
and more, each has a different cause and consequences on the EVM.

1.2 The EVM’s (lack of) Confidentiality

One of the most controversial property of the EVM is that everything is public, meaning that the sub-state of
smart contracts, which may include financial, social (and practically any kind of) information, is completely
visible to all. As we argue below, this property of the EVM is a double-edged sword, which, for a long time,
formed a dichotomy between decentralization and adoption.

On the one hand, this fact played as key-contributor to the decentralization of Ethereum (who is the first
to deploy an EVM), as it allows anyone with a computer to run it and take part in the execution of agreed
upon lists of transactions (with an adequate financial incentive mechanism); thereby increasing the validity
of the system’s state, or in other words, increasing the trust that the information laying in the state is the
product of correct execution of the past transactions.

On the other hand, the fact that everything is visible to all poses a significant setback to the usability and
adoption of the EVM. To date, the EVM’s prominent use-case is de-fi, which paved the way to collaborative
liquidity pools and automatic movement of funds. In many cases however, de-fi is used by bad actors for
scam (e.g., ‘rug pools’), fraud (e.g., money laundering), and many times is considered as ‘funds streaming in
a loop’ with no real impact. Arguably, one of the reasons for this is the lack of confidentiality, leaving honest
actors (smart contracts, DAOs and users) unable to prove and verify each other’s identity, thereby being
more vulnerable to exploits and manipulations. Furthermore, the lack of confidentiality sets an obstacle to
real social impact, as most of real world social activities deal with private information that must be treated
adequately. For example, an election requires the independence of votes and the freedom to vote one’s opinion
without fearing any consequences. Sealed bid auction, as another example, requires an independence of bids
as well as their confidentiality, since public bids exposes the bidder’s sensitive financial state.

Privacy Enhancing Technologies. Privacy has always been a pivotal aspect of human life, cherished
across all ages. However, in the current era, marked by the internet revolution, its significance has magnified.
Society is racing to keep pace with technological advancements to ensure personal information remains
confidential. In today’s digital world, where nearly every action leaves a trace, safeguarding our privacy is
not just important—it is essential. We find ourselves constantly navigating the fine line between harnessing
technology’s benefits and protecting our private lives from intrusion.

The mid-20th century’s introduction of sophisticated cryptography signaled a crucial shift towards secure
communication. This period was defined by the urgent need to transmit messages safely across potentially
compromised mediums—be it physical documents carried by unreliable couriers or digital data transmitted
through the airwaves or wires vulnerable to interception. The burgeoning field of cryptography focused
on devising methods that guaranteed not only secure communication but also the efficiency and resilience
of these communications against eavesdropping or tampering. This era witnessed cryptography’s evolution
from an arcane practice to a fundamental, science-driven toolkit essential for military units, governments,
and eventually the general public, shaping the complex digital security landscape we navigate today.

By the late 20th century and in subsequent decades, the cryptographic community experienced a rev-
olutionary shift in its research focus, heralding the era of secure multiparty computation (MPC). This
cryptographic breakthrough allowed multiple parties to collaboratively compute functions over their private
data without revealing the actual data to one another. These advancements extended beyond theoretical
significance, offering profound practical implications. They facilitated the secure exchange and processing
of information in a manner that preserved both privacy and confidentiality, addressing a growing concern
in an increasingly interconnected world. From enabling confidential electronic voting systems to secure data
sharing among organizations, multiparty computation marked a considerable advancement. This period of
research broadened the horizons of cryptography beyond traditional encryption and decryption, catering to
the nuanced requirements of a society ever more reliant on digital interactions and the perpetual challenge
of balancing technological convenience with the imperative to preserve privacy.

Opting for a garbled-circuit-based MPC to achieve on-chain privacy aligns with several critical metrics:

e Modularity. The garbled-circuit-based solution is structured into two independent phases, termed
Garbling’ and ’Evaluation’. The Garbling phase, involving significant computation by the network
nodes, is conducted ’offline’ in a pre-processing stage, producing a garbled circuit—a secure container
for data processing. This phase continually generates garbled circuits for subsequent use during the
Evaluation phase, where actual transactions are processed. The Evaluation phase is executed by the
network nodes in an exceedingly efficient manner. This modular approach is elegant and establishes a
privacy supply chain’.

e Security. Amidst various encryption schemes, our solution aspires to align with industry standards
right from the start, rather than introducing a proprietary, untested encryption scheme or waiting for a
lengthy standardization process. We employ encryption schemes already widely adopted by the world’s
most secure systems, including those managed by governments and large banks. This approach involves
standardized symmetric-key schemes for encryption (e.g., AES-CTR) and standardized asymmetric-key
schemes for key distribution (e.g., RSA), enhancing adoption by eliminating the need for additional,
unverified security assumptions. Contrary to other MPC methods, garbled-circuit-based solutions
facilitate an efficient integration of these encryption schemes within a circuit that can be securely
evaluated in a distributed manner.

Privacy. In recent years, numerous initiatives have sought to enhance on-chain privacy via the powerful
cryptographic tool known as zero-knowledge proof (ZKP). While ZKP allows data owners to verify the
correctness of statements about their data without revealing the data itself, it falls short in scenarios
involving multiple data owners who wish to collaborate based on their private data. This is vital for a
range of blockchain applications, from dynamic identity systems and DeFi applications like AMM to
portfolio management, social trading, peer-to-peer messaging, auctions, and governance. Our approach
to on-chain privacy is driven by a secure MPC protocol, where users’ data is sent to a private data
pool. Here, any process, public or private, can be applied to the data without disclosing anything but
the process result as intended by the application developer, and only with user consent.

e Performance. With the objective of optimizing real-time transaction processing involving private
data, having pre-prepared garbled circuits enables nodes participating in the Evaluation phase to
achieve a high transaction throughput. The low-latency characteristic of garbled-circuit-based MPC
ensures that the number of communication rounds between nodes is constant and does not depend on
the number of parties involved or the complexity of the transaction. Crucially, the technologies un-
derpinning both the Garbling and Evaluation phases are ready for implementation on current devices
(including smartphones), without the need for specialized hardware or awaiting significant advance-
ments in research.

o End-user experience. Maintaining an unaltered security experience (as highlighted in the security
discussion), submitting private data to the network resembles sending data over a TLS channel, em-
ploying a symmetric-key encryption scheme. This means devices today are already equipped to interact
with the network using standard protocols and widely known software libraries. This compatibility
extends to software operating on personal computers, web browsers, smartphones, smart sensors, and
potentially any IoT device.

This holistic approach to on-chain privacy underscores our dedication to ensuring security, privacy, effi-
ciency, and a user-centric experience, thereby setting a new standard for privacy in the digital domain.

2 Garbled Circuits

In this section we use a variation of the notation and definitions from ‘Foundations of Garbled Circuits’ by
Bellare, Hoang and Rogaway [BHR12].

2.1 Circuits

For simplicity, we consider circuits with fan-in of two, even though our solution is not limited to those.

A circuit is a six-tuple f = (n,m,q, A, B,G), where n > 2 is the number of inputs, m > 1 is the number
of outputs, and ¢ > 1 is the number of gates. The inputs, wires, outputs, and gates sets are indexed by
Inputs = {1,...,n}, Wires = {1,...,n+q}, Outputs = {n+qg—m+1,...,n+q}, and Gates = {n+1,...,n+q},
respectively. Then, the functions A and B are of the form Gates — Wires\ Outputs, where A(g) (resp. B(g))
returns the first, or left, (resp. second, or right) incoming wire of gate g. Finally, G is a function of the
form Gates x V2 — V, where V is the domain of values that wires can take. Here V is defined abstractly
while typically it is defined by finite group, ring or field. For instance, many times V is instantiated by the
domain V =Ty = {0,1} and the function G, which define a binary (Boolean) gates; alternatively, it can be
defined by V =T for some finite field F and G, which define arithmetic gates over F.

The above embodies the following. Gates have fan-in of two (two inputs), arbitrary functionality, and
arbitrary fan-out (an output wire may serve as an incoming wire to unlimited number of gates). The wires
are numbered 1 to n+ q. Every non-input wire is the outgoing wire of some gate. The i-th value of an input
is presented along wire i. The i-th value of an output is collected off wire n + ¢ — m + i¢. The outgoing wire
of each gate serves as the name of that gate. Output wires may not be input wires and may not be incoming
wires to gates. No output wire may be twice used in the output. Requiring A(g) < B(g) < g ensures that
the directed graph corresponding to circuit f is acyclic, and that no wire twice feeds a gate; the numbering
of gates comprise a topological sort.

Circuit evaluation. The canonical evaluation function evg, takes a circuit f and a list of inputs x =
21,%2,...,%, and returns a list of outputs Tn4g—m+1,--.,Tntq. See Lisging 1 for a formal description:

Algorithm 1 Canonical Evaluation ever(f, x)
(n,m,q,A,B,G) « f.
:forg+n+1tog+ n+qdo

a <+ A(g) and b <+ B(g)

zg + G(g,%q,Tp)
end for

AN S

return T, q_m+1,---,ZTniq

2.2 Garbling Schemes

A garbling scheme is a five-tuple of algorithms G = (Gb, En, De, Ev, ev), where Gb is probabilistic and the
rest are deterministic. Let f = (n,m,q, 4, B, G) be a circuit that we wish to garble. Recall that f represent
a function of the form V™ — V™. On input f and a security parameter x € N, the garbling algorithm Gb
returns the triple (F, e, d) + Gb(1%, f), where e describes an encoding function, En(e, -), that maps an initial
input € V™ to a garbled input X = En(e, x); F describes a garbled circuit, Ev(F,), that maps each garbled
input X to a garbled output Y = Ev(F, X); and d describes a decoding function, De(d, -) that maps a garbled
output Y to a final output y = De(d,Y) € V™.

Projective garbling schemes. A common approach in existing garbling schemes is for e to consist of
a vector of sets of labels, such that a set of labels L; is associated with the i-th input or output wire
(te{l,...,n}U{n+qg—m+1,...,n+q}). For example, if the circuit is Boolean then we have V' = {0,1} and
there are two labels for the i-th input wire, namely, L; = {L? L!}. The encoding function En(e, -) then uses

the values ¢ = 1, ..., x, to select from e = (Ly,..., L,) the subvector X = (X1,...,X,) = (L7*,..., LE).

2.2.1 Example: Secure Two-Party Computation (2PC) via Garbled Circuits

Garbling schemes were originally designed as a solution for secure two-party computation, which work

as follows. Suppose Alice has n4 inputs, denoted x4 = (x1,...,2,,) and Bob has np inputs, denoted
Tatls- -y Tnstng, Where z; € {0,1} for all 7, and n = n4 + np. Alice and Bob wish to securely compute
the circuit f = (n,m,q, A, B, G) over their joint inputs z1,...,z,. Alice and Bob can use a garbling scheme

to do so, as shown in Algorithm 2 in which Alice and Bob take the roles of the Garbler and Evaluator,
respectively. The garbler (Alice) generates the garbled circuit F' and its own garbled input X4, and sends
both to the evaluator (Bob). Then, the evaluator obtains its own garbled input Xp via a cryptographic
protocol called oblivious transfer (OT). Finally, using the garbled circuit and the garbled inputs, the evaluator
can obtain the garbled output Y and using the decoding information d it can obtain the actual (plaintext)
output y.

Algorithm 2 Secure Two-Party Computation f(xa,xp)

Interpret (n,m,q, A, B,G) « f.

Alice (the garbler) computes (F,e,d) < Gb(1*, f) (k is the security parameter).

Alice computes her garbled input X4 = En(e,z4).

Alice sends F,d and X4 to Bob.

Alice and Bob invoke a two-party protocol called oblivious transfer (OT). In this protocol Alice privately

has e and Bob privately has x5, and Bob (and only Bob) obtains the output X5 = En(e, zp).

6: Bob computes Y = Ev(F, X) where X is the concatenation of X4 and Xp.

7: Bob computes y = De(d,Y") which is the output of the computation. At this stage Bob may share that
output with Alice; in case Bob is suspicious of being malicious other security measurements are in place.

Security notions of garbling schemes. Garbling schemes may be associated with different security
guarantees, like privacy, obliviousness, authenticity, and more; in our context we are mostly interested in
privacy and authenticity. In a high level, privacy refers to the fact that the evaluator is unable to tell which
actual (plaintext) value passes through wires of the circuit, even after having the garbled circuit and the
garbled inputs (unless it has prior information about those values). Authenticity means that the evaluator
cannot produce garbled output Y’ that is different than the correct garbled output Y that is obtained
through honest evaluation of the garbled circuit.

Extension to Secure Multiparty Computation (MPC). The above is an example of how to distribute
the computation of f between two parties where each party holds part of the inputs. In our context, we are
interested in secure computation that can be executed by many parties where the private inputs themselves
might not even be theirs, e.g., private input may contain some identity information of a client (who is not
necessarily running an execution node). In a very high level, this is solved by two techniques, the first is
cryptographic secret sharing and the second is multiparty garbling protocol. In such a solution, an external
client is the one who holds the private input and the execution parties are responsible for holding it securely
and performing secure computation over it when needed.!. The client’s private data is stored by the execution
parties in a way that requires many of them to behave maliciously in order to disclose that data, otherwise,
no information can be inferred about that data. With regard to computation over such secret shared data,
the parties invoke a garbling protocol that can be run by many parties. Various protocols for multiparty
garbling have been proposed in the literature since the ’90, optimizing for various metrics like communication
rounds, bandwidth and computation complexity. The protocol that we use for the gcEVM (see next section)
is fundamentally different than those protocols, although building on similar techniques.

1Computation over a client’s private data must be under the client’s consent, a constraint we deal with in the next sections.

3 General Secure Multiparty Computation via Garbling

Given a projective garbling scheme as described above, in the following we show how to construct a general
secure computation for multiple parties, that can capture a high-level programming language. Denote
the parties involved in the computation by P = {Py,..., Py} and define two (potentially overlapping) sets
Garblers C P and Evaluators C P. We rely on the fact that the adversary may corrupt at most tg < |Garblers|
parties of the Garblers and at most tg < |Evaluators| parties of the evaluators. Note that a corrupted P; who
is both garbler and evaluator contributes to both t¢ and tg. We begin with a description of some necessary
functionalities that our protocol relies on, and an MPC protocol for a stand-alone computation of some
function f that is known to the parties ahead of time. Then, we present a stateful protocol that can be capture
a runtime execution environment for any machine, and can capture computation of functions/programs to
be known only in ‘real time’.

3.1 Secure Computation for Function f

Given a projective garbling scheme G = (Gb, En, De, Ev, ev), our MPC protocol makes use of two ‘internal’
MPC protocol; these internal protocols may be instantiated with any MPC construction from the literature
(e.g., based on secret-sharing techniques, other garbling schemes, fully-homomorphic encryption, or any other
cryptographic technique). The functionalities to be realized by these internal protocols are Fgp, the garbling
functionality, Fen, the encoding functionality, and Fpe, the decoding functionality, described in Listings 3,4
and 5, respectively. For some data structure x, that can be a vector, list, key-value store, etc., we denote by
[x] the result of a threshold secret sharing of x, where each receiver obtains only a share of x.

Algorithm 3 Garbling Functionality .Fg,;g

Parties: the functionality interacts with Garblers and Evaluators.
Parameters: a computational security parameter x and a garbling scheme G = (Gb, En, De, Ev, ev).
1: Upon receiving (garble, f) from the Garblers:

o Compute (F,e,d) + Gb(1", f).

2: return F,[d] and [e] to the Evaluators.

Algorithm 4 Encoding Functionality fgr’,g

Parties: the functionality interacts with the Evaluators.

Inputs: For each input wire i € {1,...,n}, the parties either know the public input z; or have a
sharing of it, namely [z;] is held by the Evaluators. Let Publicldx, Privateldx C {1,...,n} be the indices
of the wires for which the input is public and private, respectively, then Publicldx N Privateldx =). Let

= (T1,...,Tn)
Parameters: G = (Gb, En, De, Ev,ev).
1: Upon receiving (encode, [e], (2], ..., z})) from the Evaluators, where z} = x; if i € Publicldx and) = [z;]

if ¢ € Privateldx, reconstruct e and z; for all ¢ € Privateldx and compute X = En(e, z).
2: return X to the Evaluators.

Note that in the functionalities’ description we omit some details, like whether the garble command can
be triggered by only a subset of Garblers, and how is the functionality interacts with the adversary.
The MPC protocol that uses the above functionalities is given in Listing 6.

3.2 Secure Computation of a Future Function f

Secure computation of a future function refers to the mode of operation in which the function f to be
computed is not known at the time of garbling, yet, we want to enable the Evaluators run a secure computation

Algorithm 5 Decoding Functionality fgég

Parties: the functionality interacts with the Evaluators.
Inputs: The parties have a garbled output Y. The parties also hold a sharing of a decoding information
[d].
Parameters: G = (Gb, En, De, Ev,ev).
1: Upon receiving (decode, [d],Y") from the Evaluators, reconstruct d and compute y = De(d,Y).
2: return y to the Evaluators.

Algorithm 6 MPC Protocol IT%9
Parties: the functionality interacts with all parties P, ..., Py (which consists of Garblers U Evaluators).
Inputs: For each input wire ¢ € {1,...,n}, if ¢ € Publicldx or ¢ € Privateldx;. In the latter case it means
that x; is a private input of party P;.
Parameters: « and G = (Gb, En, De, Ev, ev).
1: Upon receiving (compute, f) from the parties:
o The Garblers send (garble, f) to]-'g{)g, upon which the Evaluators obtain F,[d] and [e].

o Party P; shares [z;] to the Evaluators for every i € Privateldx;.

o The Evaluators send (encode, [e], 7}, ..., !) to Fg, where 2 = x; if i € Publicldx and 2} = [z;]
otherwise, and obtain X.

o The Evaluators locally compute ¥ = Ev(F, X)
« The Evaluators send (decode, [d],Y) to Fg, and obtain y.

2: return y to the Evaluators.

of an arbitrary function whenever needed.

In stateful computation the parties are ‘aware’ to some instruction-set (or opcodes) to be supported, e.g.,
add, mult, etc.

To enable the parties to run computation that is unknown in the offline (or preprocessing) phase, which is
when Garblers produce the garbled circuits in the form of F, [e], [d], we use an additional functionality called
‘soldering’, denoted]:Sgold o~ The soldering functionality allows the composition of small garbled circuits
into one larger garbled circuit. The functionality takes as input two garbled circuits (F1,[e1],[d1]) and
(Fy, [ea], [da]), and a set of indices I1 and I, such that output wires with indices I of the first circuit should
be ‘soldered’ to input wires with indices Iy of the second circuit. When wire w; is soldered to wire ws, it
means that the same (secret) value will pass through them at time of evaluation. The soldering functionality
enables the Evaluators (who receive the two garbled circuits) to solder the wires without further intervention
of the Garblers.

As an example, recall that each wire in the garbled circuit is associated with a vector of labels. For
instance, consider the Boolean case in which the wires are associated with two labels, one that represents the
value 0 and another that represents the value 1. Consider garbled circuits F; and Fy such that output wire w;
in Fy should be soldered with input wire wy in F5. The soldering functionality is given the two garbled circuits
(along with their encoding and decoding information [e] and [d]), and returns some (public) information that
tells the parties how to, at the time of evaluation, translate from the label received on w; to the correct
label on ws. Let the labels associated with wy and wy be (LY, , Ly,) and (LY, , LY,), respectively, then the
soldering functionality returns d,, , such that Solder(LY, 6., ,) = LY and Solder(L}, ,d,,,) = LY, , where
Solder is the translation procedure. Note that whether the Evaluators will have L?ul or L}vl

The protocol that enables the computation of an arbitrary function f follows: In the preprocessing phase,
the Garblers send (garble, fopcode) tO]-"gt’)g, upon which the Evaluators obtain Fopcode; [dopcode] a11d [€opcode] mary
times for every opcode in the instruction set. The evaluators store those garbled circuits for a later use, when
they know what is the function f. At that time, they represent the function f as a ‘computation-tree’ that

is composed of ‘atomic’ opcodes from the instruction set. For example, if the function has four variables,
X1,T2,23, %4, and it returns (z1 + 2) - (r3 + 24) then the computation-tree has four leaves (on level 0),
X1, %2, T3, T4, the nodes in level 1 are add (that connects 1, 22 and add (that connects x3, x4, and the node
in level 2 is mult that connects the results of the two nodes in level 1. For each connection, identify the
output and input wires that should be connected and apply the soldering functionality on these wires to
obtain the translation information. Finally, obtain the garbled input X for the inputs x1,x2,x3, x4 and
begin evaluating the circuit as above. Whenever need to move from an output wire w; of one node (garbled
circuit), whose obtained label is L,,,, to the input wire ws of the next node (in a higher level), use the
translation information dy,, ., obtained from the soldering functionality to get L., = Solder(Ly,, 0w, w,),
from which it is possible to continue evaluation of the next garbled circuit.

4 The gcEVM

The gcEVM involves extension of the EVM in multiple dimensions. First, we introduce new data types in
order to capture the fact that information of this type must be kept secret; then, we introduce new operations
that can perform manipulation on secret data types without disclosing the secrets; and finally, we must take
extra care on the way we manage and protect these new data type against attackers who wish to mount
some sort of a replay attack. We discuss all these topics in this section.

4.1 gcEVM-Related Data Types

Similar to other systems, all the information in the EVM sub-state, including the balance, nonce, and
anything residing in the data structure maintained by smart contracts, is stored in atomic typed variables,
namely, variables that capture a certain type of information, be it small or large, signed or unsigned integers,
strings, or bytes. Let Types be the set of data types supported by the EVM.

For the purpose of supporting confidentiality, we introduce a new set of data types, denoted STypes,
that is analogous to Types; each data type in STypes is basically the secure version of one data type
from Types. For example, we have uint8,uint16,uint32,uint64 € Types, then their secure version are
suint8, suint16, suint32, suint64 € STypes. Generally speaking, the secure version of an EVM data type
will have the same name, prepended with the letter ‘s’ (to indicate a secret). A smart contract developer
must use these types if it wishes the underlying information to remain secret.

These data types in STypes are all referred as an abstract data type, called CT (for ‘ciphertext’), which
is essentially a re-definition of uint256, whereas data types in Types are referred as PT (for ‘plaintext’).
Looking ahead, having a ciphertext in a smart contract state, or in the memory during an execution does
not necessarily mean that it is authenticated; the gcEVM must make sure that a ciphertext is authenticated
before entering it into any secure computation procedure.

We make a distinction between secret data types that are used for security ‘at rest’, ‘in transit’, or ‘in
use’. That is, while the ciphertext data type (denoted CT) are use to secure data at rest (be it the persistent
storage or the volatile memory used in the course of an execution of a transaction), we use the inputtext data
type (denoted IT) for protecting data in transit and the garbledteztdata type (denoted GT) for protecting
data in use.

Protecting data in transit means protecting the ciphertexts that a user wish to send to some smart
contract function in a transaction. Specifically, the goal is that when a user incorporate some ciphertext in
its transaction, this ciphertext will be used only in the context of this transaction and cannot be re-used
in other transactions (by malicious actors). For example, if a user participates in a sealed bid auction and
sends a ciphertext in its transaction that hides its plaintext bid, we must prevent an adversary from copying
that user’s ciphertext and submitting it as its own bid; furthermore, we must prevent an adversary from
using that ciphertext in any way, so that the gcEVM will not agree to perform any secure operation on it.

Protecting data in use refers to the fact that even when data is secure on storage or on memory, its
security might be broken when performing some operations on it, like using it within a secure computation
protocol.

In the following we give a formal description of the three data types:

o ciphertext (CT). This data type represents the result of a CPA-secure encryption scheme and used
for securing data at rest. It is the actual datatype visible in the system’s state. Due to other security
mechanisms employed in the system, like authenticated memory and storage, and the fact that decryp-
tion is performed to ‘well formed’ ciphertexts only, we do not need to use a CCA-secure encryption
scheme (the attacker does not get to choose the ciphertexts to be decrypted by the system).

Formally, let Enc = (kgen, enc, dec) be a CPA-secure encryption scheme, for a message m = ({0, 1})*
(i.e., the message length is a multiple of the encryption block length ¢) we have:

CT = ¢ + enci(m) (1)

where (ek,dk) + Enc.kgen(1%)? and is the computational security parameter. Looking ahead, by
default, instances of CT will be the result of encryption using the system’s key, whereas some CTs will
be the result of encryption using a client’s key.

The encryption scheme we use is AES128 in the counter mode (CTR), thus, for a message m =
my||mq]... (with |m;| = 128) the encryption result is ¢ = cgllcy|| ... where ¢g = r, ¢; = AES128;(r +
1) @ m;, and r is chosen uniformly at random. CTR mode is advantageous as it allows a random access
to a specific slot in the plaintext, and it only performs a forward evaluation of the underlying PRF
(AES).

o inputtext (IT). This data type is a wrapper of CT only used to infiltrated data to the gcEVM from
the outside world. The role of IT is to make sure that the wrapped CT is used only for the purpose
it is intended to by the user who sent it. An IT may be formed of an authenticated encryption (e.g.,
using the encrypt-then-authenticate approach) or a signcryption;® in both cases the associated data
being authenticated must contain the identities of the sender and the receiver. The gcEVM inherits
the transaction format from the EVM and so every message is already signed, and the signature is
applied on those identities, as required. The sender’s identity (which is the user) is extracted from
the signature itself, while the receiver’s identity is combined of the contract address and the function
within that contract to be invoked.

The above suggests that IT can be in the exact same format as CT, however, there are subtleties
that require us taking some extra care. Specifically, instead of fully relying on the signature on the
transaction as a whole, we ask the user to individually sign each CT (as well as the identities). This is
important for security at least for the support of view functions in a setting of a single gcEVM node
(i.e., the entire system consists of a single node). Since invocation of view functions do not trigger
the verification of a signature on the transaction (in fact, calls to view functions do not have to be
signed at all), it means that an attacker may ‘steal’ an honest user’s ciphertext: the attacker’s contract
will have a function like leakData(CT c, address sender), which onboards the ciphertext ¢ to the
system’s memory using the sender’s key, and then decrypts it, so that the plaintext hidden by c
is revealed to everyone (and to the attacker in particular). The attacker now takes some ciphertext
c sent to the gcEVM earlier by an honest user of address user_addr, and calls the above function
with leakData(c, user_addr), which reveals the value that the honest user intended to keep private.
Signing each ciphertext individually prevent such an attacks.

Then, we formalize an inputtext as follows. Let ct,, be a ciphertext for message m and let Sig =
(kgen, sign, verify) be an unforgeable signature scheme; the inputtext format for m is:

IT = (ctym, 0) = (Ctym, Sign g (d||ctim)) (2)

2Since we use a symmetric encryption scheme we have k = ek = dk, but asymmetric schemes may be used in the same way
3See [KL.20] for a discussion about authenticated encryption and signcryption, and [BSW06, SPWO07] for a signatures with
strong security; in [BMP22] they argue that ECDSA has strong security (also called enhanced unforgeability).

10

where (sk,vk) < Sig.kgen(1¥), x is the computational security parameter, and d encapsulates the
identities, namely,
d = user_addr||contract_addr|/func. (3)

Given IT = (ct,0), before the gcEVM agrees to work with ¢t it must first check the identity of the
sender and then decrypt ct using that sender’s key. Specifically, this is done by:

(4)

decy(c) if verify,; (dllc,0) =1
m =
1 otherwise

We instantiate Sig with the ECDSA scheme over secp256k1.

o garbledtext(GT). This datatype is used to securely handle data while in use. Unlike inputtext and
ciphertext, garbledtext is in a form that is readily available for manipulation (e.g., making arithmetics
over the plaintext it hides) which is made inside the garbled execution environment (see below).*
Using a binary-projective implementation of a garbling scheme the garbledtext version of a message
m = (my,...,my) where m; € {0,1}, is gt of type GT, such that

gt =Ly,...,Lyg (5)

where Ly is a k-bit label (typically k = 128). Overall, a garbled-text expands the underlying data by
a factor of k. This expansion has no effect on the long-term storage requirement of the system, as
the lifetime of garbledtexts is short (it is only valid during the execution time of a transaction). The
garbledtexts themselves are not utilized by smart contracts and are not appear in their raw form in
the gcEVM memory or storage, instead, their handles are being used, where a handle of a garbledtext
is simply a hash on the list of its labels; namely, hgy = H(gt) is the handle of gt, where H is a
hash function. We instantiate H by Keccak, which is a collision resistant hash function, therefore, the
probability of two garbledtexts having the same handle is negligible.

The nodes who take part in evaluation or verification of garbled circuits do obtain the raw representation
of garbledtext (the labels). Those nodes store a map of the form hgy — gt; whenever a secure operation
is invoked on garbledtext(s) the evaluation nodes perform the actual computation, which mostly results
with another garbledtext, whereas verification nodes have the result of the computation and verify its
correctness.

The fact that evaluation nodes obtain the raw form of garbledtexts forces the protocol design to assume
the worst-case scenario, that the attacker obtains them too (e.g., an attacker who corrupts an evaluation
node). Thus, the system must protect itself from theft of garbledtexts. For example, suppose that a
corrupted evaluation node knows that gt is a garbledtext result of some secure operation in the next
block, then it may inject hg: to a function of some contract in the next block, such that the function
performs decryption of that garbledtext. Fortunately, the garbling scheme ensures that all garbledtexts
are unpredictable and are only known to the evaluation nodes at the moment of evaluation and never
before.

4.2 The gcEVM Data-Flow

Before delving into technical details, let us describe the data-flow at a high level, which is also depicted in
Figure 1.

In order to preserve security in the course of the execution, the network and the users maintain multiple
keys:

4We note that in FHE-based solutions there is no distinction in the representation of hidden data at rest and in use.

11

e Network key: nk is the network symmetric key. This key is being distributively generated on the
network’s startup (via a key-generation protocol) which results with a key share nk; to MPC node
number i. A refresh protocol is applied to the network key, which results with a new key share nk;
to the nodes, but the secret key nk itself remains the same; such mechanism is intended to protect
from adaptive adversaries, who can corrupt a dynamic subset of the parties at every given moment,
and thwart accumulation of their power. In addition, a re-generation of the network key would take
place from time to tiem, according to the network’s policy (e.g., upon accumulation of additional 20%
of staked funds); this re-generation protocol would generate a new network key nk* and re-encrypt all
ciphertexts under this new one.

e User key: Apart from the secret signing key that users usually maintain in their wallet, the user has a
symmetric key uk with which it enters new data to the network. Like the network key nk, the user key
uk is distributively generated and is secret shared among the network nodes (so node number ¢ holds
share uk;). Thus, when a new data is to be entered (e.g., to a function of a smart contract) the user
encrypts it and the function asks to decrypt and use it. As will be shortly explained, such a decryption
does not reveal the plaintext to the function (or in public in any way), rather, it transform the data
into a garbledtext, which enables the function to securely operate on it.

e Key-retrieval key: This is a public-key that is generated by a user in order to retrieve its symmetric key
from the network. This is done by a generation of asymmetric encryption and decryption keys ek, dk
by the user, and submitting ek to the network (via a transaction). Upon receiving the encryption
key ek, the network encrypts the user’s symmetric key uk under the temporary public encryption key
ek, and returns the encryption result to the user. The user then uses the secret decryption key dk to
decrypt that message and obtain the symmetric key uk that is also maintained by the network. The
user can now use uk in order to enter encrypted data to the network.

The network maintains its own symmetric encryption key as well as a symmetric encryption key for every
user that wants to benefit from data privacy in the system. In contrast to a signature key-pair, which is
generated at the user and can be used without any on-boarding process, the encryption key for each user is
generated by the network and can be used by the user only after on-boarding, which entails a simple query
to the system to generate its key (or to retrieve it if it already exists) via the key-retrieval key. Note that the
key may be generated prior to the user’s query, in cases a smart contract already performed an encryption
toward that user (meaning that the smart contract decided that some information should be decipherable
by that user only).

For a user to bring encrypted data to the gcEVM, it has to encrypt it using its own symmetric key, and
sign it using its own signing key. These two form an inputtext (as detailed above). Once this inputtext
reaches a function of a contract, the function first has to verify its authenticity and that the inputtext has
landed where the sender (user) really intended it to land; the result of a successful verification will be a
garbledtext that is ready to work with (it can serve as an input for secure operations) inside the garbled
execution environment (GEE). The verification procedure is according to Equation 4 above.

The above is one path to the GEE; a second path to the GEE would be to ‘onboard’ a ciphertext, which
turns a ciphertext into a garbledtext (both hiding the same plaintext). Ciphertexts reside in the state of
each contract and ‘belong’ to the contract where they reside, meaning that a function on one contract cannot
request the onboarding of a ciphertext in another contract, which is critical for the security and privacy of
users’ data.

4.3 Authentic Memory and Storage

It is crucial to ensure the authenticity of all three data types within the operation of the network, safeguarding
them against any potential malicious manipulation. Given the transparency of the blockchain, inputtext
and ciphertext are susceptible to malicious copying or unauthorized acquisition. Contrarily, we argue that
garbledtexrts cannot be predicted, copied or obtained outside the transaction’s execution.

12

Network :

‘user | inputtext

garbledtext

computation

reject

Figure 1: Transition between data types.

Generally speaking, the challenge of protecting private data in the context of blockchains mostly deals
with ensuring an adequate and tight access control to those ciphertexts. The use of the plaintext behind an
inputtext or a ciphertext must be permitted only if this usage complies with the intentions of the contract
that is owning or receiving them, and the users who contributed those inputtexts.

In a high level, the system employs three types of protection mechanisms: authenticated storage, authen-
ticated memory and garbled execution environment (GEE).

o Authenticated storage protects ciphertexts ‘at rest’; each ciphertext is associated with one or more
contract addresses in a way that permits onboarding of the ciphertext only in the execution of those
contracts; this means that copying a ciphertext from one contract to another is futile. By copying a
ciphertext ¢t we mean either hardcoding the content of ct into another contract, or transmitting it
within a transaction as an argument.

o Authenticated memory is the vehicle between the storage and the execution environment. The function
first loads the ciphertext from storage into the execution environment memory, from which it may turn
into a garbledtext. On the other way around, to store the plaintext value behind a garbledtext to
storage, it has to be offboarded first into a ciphertext that resides in memory, from which it is actually
stored in the storage.

e Ciphertexts cannot be transferred between contracts, which means it is useless to pass a ciphertext
as an argument between different contracts. The way to pass private information between contracts
is for the caller contract to turn the ciphertext into a garbledtext first, which puts it in the garbled
execution environment, and then pass the garbledtext to the callee contract, this way, the garbledtext
is available for secure manipulation by the caller as well. Garbledtexts are protected by the fact that
they are random and unpredictable values generated ‘on-the-fly’.

13

Authenticated Memory & Storage. Memory refers to the EVM run-time memory, which is stack-
based, and storage refers to the EVM persistent storage, which is maintained per address. Recall that only
contracts’ addresses (i.e., to exclude EOA addresses) are associated with actual storage, whereas EOAs are
associated with the their balance and nonce only. For a function to perform some computation on a state
variable, it has to first load it from the contract’s storage and to know its exact location in the storage. To
do that, the function provides the variable’s location loc to the sload opcode, which triggers the EVM to
execute it and push the variable’s content to the memory stack.” On the other way around, for a function
to persistently save some value into some state variable, it provides the location loc of that variable as well
as the value to the sstore opcode.

The EVM keeps track of the depth of the execution, that is, when an EOA calls some function funci on
a certain contract contractl, the execution of funcl begins at depth = 1; if that function calls function,
say func2, on another contract, say contract2, then depth changes to 2 (and changes back to 1 when func2
returns to func1), and so on. Note that function calls within the same contract do not change depth.

The gcEVM provides an extension to the ‘normal’ EVM memory and storage operation described above,
which we call authenticated memory and authenticated storage.

The authenticated memory maintains a map of the form

N — CT*,

that is, for each execution depth the map maintains all authenticated ciphertexts for that depth. To check
whether a ciphertext ct is authenticated for depth d, we check if ¢t € p(d). In our context, a ciphertext
may arrive in memory by either loading it from storage via the sload opcode or as a result of the Offboard
mechanism (which, given a garbledtext, returns a ciphertext).

Authenticated storage is maintained in a per-contract basis; each contract, say on address addr, is
associated with another contract at address addr’ that contains only storage (and no bytecode). The relation
between addr and addr’ must be one-to-one, so that a malicious entity would not be able to associate
another address addr” to neither addr or addr’. The associated contract at addr’ forms the authenticated
storage of the contract at addr; this authenticated storage is only accessible from the EVM and not by the
contract developer. If a valid ciphertext ct resides at location loc of the storage of address addr, then the
authenticated storage, of address addr’, contains ct at the same location loc. We must ensure that a user
cannot cause this to happen on invalid ciphertexts.

The authenticated memory and storage adhere to the following rules, which are also depicted in Figure
2.

1. Load from storage. A ciphertext ct resulting from sload applied to a storage at location loc that is
performed in depth d is first checked against the authenticated storage. If the authenticated storage
has ct in location loc as well then ct is added to the set u(d), otherwise ct is not add to u(d) (but it
is pushed to the normal memory).

2. Onboard. When Onboard is invoked by a function at depth d on cipher ct, if ct is authenticated for
depth d (i.e., ct ¢ u(d)) then it is being translated into a garbledtext and that garbledtext is returned
to the caller; otherwise, the execution is reverted.

3. User input. As explained above, a user input is encrypted by its own symmetric key and upon verifi-
cation (of authenticity) it is turned directly into a garbledtext, readily available for secure operations.

4. Public input. A contract might want to input some public input into the secure execution environment
(GEE), which means that value has to be turned into a garbledtext. This is done via the special opcode
‘SetPublic’.

5. Offboard. A ciphertext ct resulting from the 0ffboard mechanism (applied to a garbledtext) that
is performed by a function in depth = d is added to the set u(d), upon which we say that ct is
authenticated for depth d.

5Location is also known as ‘key’ in the context of the EVM storage, as the storage is simply a key-value store.

14

Authenticated
Storage

Authenticated
Memory

De/pm User

Garbled Execution
Environment (GEE)

EVM Memory

EVM Storage

Figure 2: Overview of the gcEVM. The colored part represents the security and privacy extension to the
normal EVM, which is represented by the white part.

6. Offboard to user. When a contract wishes to disclose some value only to a specific user, that value is
turned from garbledtext into a ciphertext that is encrypted under that user’s key (the symmetric key
uk), and that ciphertext is not considered authenticated (it is placed in memory but is not added to

p(d)).

7. Decrypt. When a garbledtext is decrypted, the plaintext value is returned directly to the normal
(non-authenticated) memory.

8. Store to storage. When sstore is called by a function at depth = d, to store ct at location loc, if
ct € u(d) then, in addition to writing ¢t to location loc of the normal storage, write it to location loc

15

in the authenticated storage as well, otherwise (if ¢t ¢ pu(d)) write it only to the normal storage, and
make sure the authenticated storage at location loc is empty.

9. Cleaning memory. When depth is decreased from d to d’ < d (when a function returns, reverts, etc.)
the set p(d) in the authenticated memory is cleaned. Similarly, when depth is increased from d to
d+ 1 (on a function call), we make sure that u(d + 1) is empty.

10. Immobility of ciphertexts. An authenticated ciphertext cannot transit between depths, namely, calling
a function (on another contract) with an argument of type CT would deem that ciphertext invalid (i.e.,
it will not be considered as authenticated for the new depth); similarly, when returning an argument
of type CT to a caller function from another contract the returned value would not be considered
authenticated. The right way to move such private values is by using the GT type.

The Garbled Execution Environment (GEE). As explained, a garbledtexts may be generated from
an inputtext or a ciphertext, only upon confirming their authenticity. It is crucial to note that garbledtexts
bear significance only in the course of the execution of the transaction. Additionally, their inherent safety is
derived from the negligible likelihood of predicting them, given that they are formed of random values that
are revealed to the parties only at the very moment of execution. This property allows us to treat them
with ease rather than keep tracking them across function calls. Since the next batch of transactions to run
is fixed before the garbledtexts are revealed, it is not possible for a user or for a contract to hardcode a
garbledtext in their transaction or state, as garbledtexts are unpredictable, furthermore, these garbledtexts
become useless once the execution of the transaction is completed; the garbledtexts for the next transactions
batch would be completely fresh.

References

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Ting
Yu, George Danezis, and Virgil D. Gligor, editors, the ACM Conference on Computer and Com-
munications Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012, pages 784-796. ACM,
2012.

[BMP22] Constantin Blokh, Nikolaos Makriyannis, and Udi Peled. Efficient asymmetric threshold ECDSA
for mpc-based cold storage. ePrint Archive, 2022.

[BSW06] Dan Boneh, Emily Shen, and Brent Waters. Strongly unforgeable signatures based on computa-
tional diffie-hellman. In PKC, pages 229-240. Springer, 2006.

[KL20] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chapman and
Hall/CRC, 2020.

[SPWO07] Ron Steinfeld, Josef Pieprzyk, and Huaxiong Wang. How to strengthen any weakly unforgeable
signature into a strongly unforgeable signature. In CT-RSA, pages 357-371. Springer, 2007.

16

